
Model Severing

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

The Pipeline

2
https://cloud.google.com/blog/topics/developers-practitioners/intro-data-science-google-cloud

https://cloud.google.com/blog/topics/developers-practitioners/intro-data-science-google-cloud

Ship an inference model

 A data science project doesn’t end when you arrive at a Colab/Kaggle notebook

that can save a trained model

1. First, you may want to export your model to something other than Python:

 Your production environment may not support Python at all - for instance, if it’s a mobile app or

an embedded system

 If the rest of the app isn’t in Python (it could be in JavaScript, C++, etc.), the use of Python to

serve a model may induce significant overhead

2. Second, since your production model will only be used to output predictions, rather than

for training, you have room to perform various optimizations that can make the model

faster and reduce its memory footprint

3. Finally, you should monitor the health and potential drifts of your system!

3

How to save a model?

 It’s a good idea to include all the preprocessing layers in the final model you

export so that it can ingest data in its natural form when deployed to production

 This avoids having to take care of preprocessing separately within the application that uses

the model. It also makes it simpler to update them later on and limits the risk of mismatch

between a model and the preprocessing steps it requires

 However, we can skip this step if we retrieve our features from the same source location

for both training and serving, ie. from a feature store

 Using save utility that serializes and de-serializes a model

 For reproducibility and quality control needs, when different architectures and

environments should be taken into account, exporting the model in Open Neural Network

Exchange format (ONNX) format or even using a container might be good options

4

https://madewithml.com/courses/mlops/feature-store/
https://onnx.ai/get-started.html

A Typical Example

 Once you have trained a model, you can easily use it in any Python code

 But as your infrastructure grows, there comes a point where it is preferable to wrap your

model in a small service whose sole role is to make predictions and have the rest of the

infrastructure query it (e.g., via a REST or gRPC API)

 This decouples your model from the rest of the infrastructure, making it possible to easily

switch model versions or scale the service up as needed (independently from the rest of

your infrastructure), and ensure that all your software components rely on the same model

versions

5

https://madewithml.com/courses/mlops/cicd/

Deploy the model!

 Back to that you’re starting your own data science consulting shop. You put up

a fancy website, you notify your network. The projects start rolling in:

1. A personalized photo search engine for a picture-sharing social network—type in

“wedding” and retrieve all the pictures you took at weddings

2. Flagging spam and offensive text content among the posts of a chat app

3. Building a music recommendation system for users of an online radio

6

4. Detecting credit card fraud for an e-commerce

website

5. Predicting display ad click-through rate to decide

which ad to serve to a given user at a given time

6. Flagging anomalous cookies on the conveyor belt

of a cookie-manufacturing line

1. Deploying a model in remote server

 This is perhaps the common way to turn a model into a product: install model

environment (Like scikit-learn, XGBoost or Keras) on a server or cloud

instance, and query the model’s predictions via a REST API

 You could build your own serving app using something like Flask or FastAPI (or any other

Python web development library)

 Keras also has its own library for shipping models as APIs, called TensorFlow Serving. For

other models, you can use BentoML

7

https://madewithml.com/courses/mlops/api/
http://www.tensorflow.org/tfx/guide/serving
https://docs.bentoml.org/en/latest/frameworks/index.html

The infrastructure

 An important question when deploying a model as a REST API or webapp is

whether you want to host the code on your own, or whether you want to use a

fully managed third-party cloud service

1. Compute engine: Google Cloud AI Platform lets you simply upload your model to

Google Cloud Storage (GCS), and it gives you an API endpoint to query it. It takes care

of many practical details, such as batching predictions, load balancing, and scaling

2. Using container orchestration via Kubernetes for managed deployment is a good choice.

There are also fully-managed solutions for containers, such as SageMaker, BentoML, etc

 We want to be able to encapsulate all the requirements we need so that there are no external

dependencies by using a container

3. Use serverless options such as AWS Lambda, Google Cloud Functions, etc

8

https://madewithml.com/courses/mlops/infrastructure/#methods
https://kubernetes.io/
https://aws.amazon.com/lambda/?nc1=h_ls
https://cloud.google.com/functions

1. Deploying a model in remote server

 You should use this deployment setup when

1. The application that will consume the model’s prediction will have reliable access to the

internet (obviously)

 For instance, if your application is a mobile app, serving predictions from a remote API means

that the application won’t be usable in airplane mode or in a low-connectivity environment

2. The application does not have strict latency requirements: the request, inference, and

answer round trip will typically take around 500 ms

3. The input data sent for inference is not highly sensitive: the data will need to be available

on the server in a decrypted form, since it will need to be seen by the model (but note that

you should use SSL encryption for the HTTP request and answer)

 For instance, the image search engine project, the music recommender system,

and the credit card fraud detection project are all good fits for serving via a

REST API

9

1. Deploying a model in remote server

 The REST API is nice and simple, and it works well when the input and output

data are not too large. Moreover, just about any client application can make

REST queries without additional dependencies

 However, it is based on JSON, which is text-based and fairly verbose

10

 It is inefficient in terms of

serialization/deserialization time and

payload size: many floats end up

being represented using over 15

characters, which translates to over

120 bits for 32-bit floats! This will

result in high latency and bandwidth.

You may try other protocol like gRPC

instead

2. Deploying a model in local computer

 Many models (especially deep learning) are often used in browser-based or

desktop-based JavaScript applications

 While it is usually possible to have the application query a remote model via a REST API,

there can be key advantages in having the model run directly in the browser

 This can be hosted on the server or

 On the user’s computer!

11

https://share.streamlit.io/streamlit/demo-self-driving
https://share.streamlit.io/streamlit/demo-self-driving

2. Deploying a model in local computer

 You should only go with this option if your model is small enough that it won’t

hog the CPU, GPU, or RAM of your user’s laptop or smartphone

 Since the entire model will be downloaded to the user’s device, you should make sure that

nothing about the model needs to stay confidential. Be mindful of the fact that, given a

trained model, it is usually possible to recover some information about the training data:

better not to make your trained model public if it was trained on sensitive data

 To deploy a model in JavaScript, the TensorFlow ecosystem includes TensorFlow.js, a

library for deep learning that implements almost all of the Keras API as well as lower-level

TensorFlow APIs. You can easily import a saved Keras model into TensorFlow.js to query

it as part of your browser-based JavaScript app or your desktop Electron app

 If you simply need a web interface, you can use Streamlit or Gradio

12

http://www.tensorflow.org/js
https://streamlit.io/
https://gradio.app/

Inference model optimization

 Optimizing your model for inference is especially important when deploying in

an environment with strict constraints on available power and memory or for

applications with low latency requirements

 You should always seek to optimize your model. There are two popular optimization

techniques you can apply:

 Weight pruning—Not every coefficient in a weight tensor contributes equally to the predictions.

It’s possible to considerably lower the number of parameters in the layers of your model by only

keeping the most significant ones. This reduces the memory and compute footprint of your model,

at a small cost in performance metrics. By deciding how much pruning you want to apply, you are

in control of the trade-off between size and accuracy

 Weight quantization—Deep learning models are trained with single-precision floating-point

(float32). However, it’s possible to quantize weights to 8-bit signed integers (int8) to get an

inference-only model that’s a quarter the size but remains near the accuracy of the original model

13

2. Deploying a model in local computer

 Use this setup when

1. You want to offload compute to the end user, which can dramatically reduce server costs

2. You need your app to keep working without connectivity, after the model has been

downloaded and cached

 When your web application is often used in situations where the user’s connectivity is intermittent

or slow (e.g., a website for hikers), so running the model directly on the client side is the only

way to make your website reliable

3. Your application has strict latency constraints. While a model running on the end user’s

laptop or smartphone is likely to be slower than one running on a large GPU on your own

server, you don’t have the extra 500 ms of network round trip

4. The input data needs to stay on the end user’s computer or phone. For instance, in spam

detection project, the web version and the desktop version of the chat app (implemented

as a cross-platform app written in Java-Script) should use a locally run model

14

3. Deploying a model on a device

 Sometimes, you may need your model to live on the same device that runs the

application that uses it - maybe a smartphone, an embedded ARM CPU on a

robot, or a microcontroller on a tiny device

 You may have seen a camera capable of automatically detecting people and faces in the

scenes you pointed it at: that was probably a small model running directly on the camera

15

Deploying a model on a device

 To deploy a Keras model on a smartphone or embedded device, your go-to

solution is TensorFlow Lite

 It’s a framework for efficient on-device deep learning inference that runs on Android and

iOS smartphones, as well as ARM64-based computers, Raspberry Pi, or certain

microcontrollers. It includes a converter that can straightforwardly turn your Keras model

into the TensorFlow Lite format

 For other model, you can use Kivy or BeeWare

 For instance

 Spam detection model for chat app will need to run on the end user’s smartphone as part of

the chat app, because messages are end-to-end encrypted and thus cannot be read by a

remotely hosted model. Likewise, the bad-cookie detection model has strict latency

constraints and will need to run at the factory

16

http://www.tensorflow.org/lite
https://github.com/kivy/kivy
https://beeware.org/

Deploying a model on a device

 You should use this setup when

1. Your model has strict latency constraints or needs to run in a low-connectivity

environment. If you’re building an immersive augmented reality application, querying a

remote server is not a viable option

2. Your model can be made sufficiently small that it can run under the memory and power

constraints of the target device. You can use the TensorFlow Model Optimization Toolkit

to help with this

3. Getting the highest possible accuracy isn’t mission critical for your task. There is always

a trade-off between runtime efficiency and accuracy, so memory and power constraints

often require you to ship a model that isn’t quite as good as the best model you could run

4. The input data is strictly sensitive and thus shouldn’t be decryptable on a remote server

17

http://www.tensorflow.org/model_optimization

4. Monitor your model in the wild

 You’ve exported an inference model, you’ve integrated it into your application,

and you’ve done a dry run on production data - the model behaved as expected

 You’ve written unit tests as well as logging and status-monitoring code. Now it’s time to

press the big red button and deploy to production

 Even this is not the end! Once you’ve deployed a model, you need to keep monitoring its

behavior, its performance on new data, its interaction with the rest of the application, and

its eventual impact on business metrics

18

Monitor your model in the wild

 For instance

 Is user engagement in your online radio up or down after deploying the new music

recommender system?

 Has the average ad click-through rate increased after switching to the new click-through-

rate prediction model?

 If possible, do a regular manual audit of the model’s predictions on production data. It’s

generally possible to reuse the same infrastructure as for data annotation

 Send some fraction of the production data to be manually annotated, and compare the model’s

predictions to the new annotations. For instance, you should definitely do this for the image

search engine and the bad-cookie flagging system

 When manual audits are impossible, consider alternative evaluation avenues such as user

surveys (for example, in the case of the spam and offensive-content flagging system)

19

Monitor your model in the wild

 The machine learning model is subject to natural performance degradation over

time, as well as unintended behavior, since the data exposed to the model will

be different from what it has been trained on

 This isn't something we should be trying to avoid but rather understand and mitigate as

much as possible

 Testing and monitoring share a lot of similarities, such as ensuring that certain

expectations around data completeness, distributions, schema, etc. are met

 However, a key distinction is that monitoring involves comparing live, streaming data

distributions from production to fixed/sliding reference distributions from training data

20

System health

 The first step is to ensure that the actual system is up and running as it should

 This can include metrics specific to service requests such as latency, throughput, error rates,

etc. as well as infrastructure utilization such as CPU/GPU utilization, memory, etc

21

 Fortunately, most cloud providers

and even orchestration layers will

provide this insight into our system's

health for free through a dashboard.

In the event we don't, we can easily

use Grafana, Datadog, etc. to ingest

system performance metrics from

logs to create a customized

dashboard and set alerts

https://grafana.com/
https://www.datadoghq.com/

Performance

 The next layer of metrics to monitor involves the model's performance

 It's usually never enough to just analyze the cumulative performance metrics across the

entire span of time since the model has been deployed

 We should also inspect performance across a period of time that's significant for our

application (ex. daily). These sliding metrics might be more indicative and we might be

able to identify issues faster by not obscuring them with historical data

22

Drift

 We need to first understand the different types of issues that can cause our

model's performance to decay (model drift). The best way to do this is to look

at all the moving pieces of what we're trying to model and how each one can

experience drift

23

Drift

𝑝(𝑦|𝑋) actual relationship between 𝑋 and 𝑦 Concept drift → 𝑃(𝑦|𝑋) ≠ 𝑃𝑟𝑒𝑓(𝑦|𝑋)

𝑋 inputs (features) Data drift → 𝑃(𝑋) ≠ 𝑃𝑟𝑒𝑓(𝑋)

𝑦 outputs (ground-truth) Target drift → 𝑃(𝑦) ≠ 𝑃𝑟𝑒𝑓(𝑦)

Data drift

 Data drift, also known as feature drift or covariate shift, occurs when the

distribution of the production data is different from the training data

 The model can not deal with this drift in the feature space and it's predictions may not be

reliable. The actual cause of drift can be attributed to natural changes in the real-world but

also to systemic issues such as missing data, pipeline errors, schema changes, etc

 As data starts to drift, we may not yet notice significant decay in our model's performance,

especially if the model is able to interpolate well. However, this is a great opportunity

to potentially retrain before the drift starts to impact performance

24

Target drift

 Besides just the input data changing, as with data drift, we can also experience

drift in our outcomes

 This can be a shift in the distributions but also the removal or addition of new classes with

categorical tasks. Though retraining can mitigate the performance decay caused target drift,

it can often be avoided with proper inter-pipeline communication about new classes,

schema changes, etc

25

Concept drift

 Besides the input and output data drifting, we can have the actual relationship

between them drift as well

 This concept drift renders our model ineffective because the patterns it learned to map

between the original inputs and outputs are no longer relevant. Concept drift can be

something that occurs in various patterns

 Monitor the model performance to detect concept drift

 You may try to use online learning to alleviate it

26

Concept drift

 No model lasts forever! You’ve already learned about concept drift: over time,

the characteristics of your production data will change, gradually degrading the

performance and relevance of your model

 The lifespan of your music recommender system will be counted in weeks. For the credit

card fraud detection systems, it will be days. A couple of years in the best case for the

image search engine. As soon as your model has launched, you should be getting ready to

train the next generation that will replace it

 Watch out for changes in the production data. Are new features becoming available? Should you

expand or otherwise edit the label set?

 Keep collecting and annotating data, and keep improving your annotation pipeline over time. In

particular, you should pay special attention to collecting samples that seem to be difficult for your

current model to classify - such samples are the most likely to help improve performance

27

Locating drift

 Now that we've identified the different types of drift, we need to locate and

how often to measure it. Here are the constraints we need to consider:

 Reference window: the set of points to compare production data distributions with to

identify drift

 Target window: the set of points to compare with the reference window to determine if

drift has occurred

 Since we're dealing with online drift detection (ie. detecting drift in live

production data as opposed to past batch data), we can employ either a fixed or

sliding window approach to identify our set of points for comparison

 Typically, the reference window is a fixed, recent subset of the training data while the

target window slides over time

28

Measuring drift

 Once we have the window of points we wish to compare, we need to know

how to compare them

 Expectations - The first line of measurement can be rule-based such as validating

expectations around missing values, data types, value ranges, etc

 Univariate - Once we've validated our rule-based expectations, we need to quantitatively

measure drift. Traditionally, in order to compare two different sets of points to see if they

come from the same distribution, we use two-sample hypothesis testing on the distance

measured by a test

 Multivariate - Measuring drift is fairly straightforward for univariate data but difficult for

multivariate data

29

Measuring drift

 Univariate

 Kolmogorov-Smirnov (KS) test or Chi-squared test

 Multivariate

 Dimensionality reduction – PCA or Autoencdoer

 Two-sample tests

 Maximum Mean Discrepancy (MMD): a kernel-based multivariate two-sample tests

 Kolmogorov-Smirnov (KS) Test + Bonferroni Correction

 Other metrics

30

https://physics.stackexchange.com/questions/107682/kolmogorov-smirnov-test-vs-chi-squared-test
https://arxiv.org/abs/1810.11953
https://gantry.io/blog/youre-probably-monitoring-your-models-wrong/

Conclusion

 Model serving should consider

 You need to determine how to save your model

 Deploy the model using the REST API server, through local computer or onto device

 Monitor the health and potential drifts of your system!

 This concludes the universal workflow of machine learning—that’s many

things to keep in mind. It takes time and experience to become an expert, but

don’t worry. You’re already a lot wiser than you were a few chapters ago. You

are now familiar with the big picture—the entire spectrum of what machine

learning projects entail. Always keep in mind the big picture!

31

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

3rd Edition Chapter 1 and 19

[2] Deep learning with Python, 2nd Edition Chapter 9

[3] https://madewithml.com/courses/mlops/monitoring/

[4] https://fullstackdeeplearning.com/spring2021/lecture-11/#ii-model-

monitoring

[5] https://fullstackdeeplearning.com/course/2022/lecture-5-deployment/

[6] https://evidentlyai.com/blog/tutorial-1-model-analytics-in-production

32

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.kaggle.com/learn/machine-learning-explainability
https://madewithml.com/courses/mlops/monitoring/
https://fullstackdeeplearning.com/spring2021/lecture-11/#ii-model-monitoring
https://fullstackdeeplearning.com/course/2022/lecture-5-deployment/
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/xai_v4.pptx
https://evidentlyai.com/blog/tutorial-1-model-analytics-in-production

Appendix

33

Resources and libraries

 Lectures

 https://github.com/microsoft/ML-For-Beginners/blob/main/3-Web-App/1-Web-App/README.md

 https://github.com/microsoft/Data-Science-For-Beginners/blob/main/5-Data-Science-In-Cloud/17-

Introduction/README.md

 https://github.com/microsoft/Data-Science-For-Beginners/blob/main/6-Data-Science-In-Wild/20-

Real-World-Examples/README.md

 Pipelines

 https://madewithml.com/courses/mlops/pipelines/

 Continual learning

 https://madewithml.com/courses/mlops/continual-learning/

 https://fullstackdeeplearning.com/course/2022/lecture-6-continual-learning/

 On-line learning

 https://github.com/online-ml/river

34

https://github.com/microsoft/ML-For-Beginners/blob/main/3-Web-App/1-Web-App/README.md
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/5-Data-Science-In-Cloud/17-Introduction/README.md
https://github.com/microsoft/Data-Science-For-Beginners/blob/main/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
https://madewithml.com/courses/mlops/pipelines/
https://madewithml.com/courses/mlops/continual-learning/
https://fullstackdeeplearning.com/course/2022/lecture-6-continual-learning/
https://github.com/online-ml/river

Resources and libraries

 Deployment

 Flask

 FastAPI

 Tensorflow serving

 https://pytorch.org/serve/

 TensorFlow.js

 TensorFlow Lite

 https://pytorch.org/mobile/home/

 Streamlit

 Gradio

 https://github.com/voila-dashboards/voila

 https://github.com/datapane/datapane

35

https://flask.palletsprojects.com/en/2.1.x/
https://fastapi.tiangolo.com/
https://github.com/tensorflow/serving
https://pytorch.org/serve/
http://www.tensorflow.org/js
http://www.tensorflow.org/lite
http://www.tensorflow.org/lite
https://streamlit.io/
https://gradio.app/
https://github.com/voila-dashboards/voila
https://github.com/datapane/datapane

Resources and libraries

 Container

 https://github.com/bentoml/BentoML

 https://github.com/replicate/cog

 https://github.com/basetenlabs/truss

 Optimization before deployment

 https://www.tensorflow.org/model_optimization

 https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

 https://huggingface.co/docs/optimum/index

36

https://github.com/bentoml/BentoML
https://github.com/replicate/cog
https://github.com/basetenlabs/truss
https://www.tensorflow.org/model_optimization
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://huggingface.co/docs/optimum/index

Resources and libraries

 Testing

 https://madewithml.com/courses/mlops/testing/

 Monitoring and testing

 https://github.com/evidentlyai/evidently

 https://github.com/whylabs/whylogs

 https://github.com/deepchecks/deepchecks

 https://github.com/SeldonIO/alibi-detect

 https://greatexpectations.io/

37

https://madewithml.com/courses/mlops/testing/
https://github.com/evidentlyai/evidently
https://github.com/deepchecks/deepchecks
https://github.com/deepchecks/deepchecks
https://github.com/SeldonIO/alibi-detect
https://greatexpectations.io/

Determine how to serve

 Online Learning

 In online learning, you train the system

incrementally by feeding it data sequentially,

either individually or mini-batches. Each

learning step is fast and cheap, so the system

can learn about new data on the fly

 It can receive data as a continuous flow and

need to adapt to change rapidly

 One important parameter of online learning

systems is how fast they should adapt to

changing data: this is called the learning rate

38

Determine how to serve

 Online Learning

 If bad data is fed to the system, the system’s

performance will gradually decline. For

example, bad data could come from a

malfunctioning sensor on a robot, or from

someone spamming a search engine to try to

rank high in search results. To reduce this risk,

you need to monitor your system closely and

promptly switch learning off

 Similarly, you need to determine whether

your system provide stream or batch

serving

39

Build a Prototype To Interact With

 Here are some best practices for prototype deployment:

1. Have a basic UI: The goal at this stage is to play around with the model and collect

feedback from other folks

2. Put it behind a web URL: An URL is easier to share. Furthermore, you will start

thinking about the tradeoffs you'll be making when dealing with more complex

deployment schemes

3. Do not stress it too much: You should not take more than a day to build a prototype

 A model prototype won't be your end solution to deploy

 Firstly, a prototype has limited frontend flexibility, so eventually, you want to be able to

build a fully custom UI for the model

 Secondly, a prototype does not scale to many concurrent requests. Once you start having

users, you'll hit the scaling limits quickly

40

Build a Prototype To Interact With

1. Your web server may be written in a different language

2. Models may change more frequently than server code

 If you have a well-established application and a nascent model, you do not want to

redeploy the entire application every time that you make an update to the model

41

3. Large models can eat into the resources

for your web server. That might affect

the user experience for people using that

web server, even if they are not

interacting with the model

4. Your model and application may have

different scaling properties

Separate Your Model From Your UI

 The first pattern to pull your model from your UI is called batch prediction

 You get new data in and run your model on each data point. Then, you save the results of

each model inference into a database

 For example, if there are not a lot of potential inputs to the model, you can re-run your

model on some frequency. You can have reasonably fresh predictions to return to those

users that are stored in your database. Examples of these problems include the early stages

of building recommender systems and internal-facing tools like marketing automation

42

Separate Your Model From Your UI

 Pros and Cons

 Batch prediction scales easily because databases have been engineered for such a purpose

 Even though it looks like a simple pattern, it has been used in production by large-scale

production systems for years

 It is fast to retrieve the prediction since the database is designed for the end application to

interact with

X Batch prediction doesn't scale to complex input types. If the universe of inputs is too large

to enumerate every single time you need to update your predictions, this won't work

X Users won't be getting the most up-to-date predictions from your model. If the feature that

goes into your model changes every hour, minute, but you only run your batch prediction

job every day, the predictions your users see might be slightly stale.

X Models frequently become "stale." If your batch jobs fail for some reason, it can be hard to

detect these problems

43

Model-as-Service

 We run the model online as its own service. The service is going to interact

with the backend or the client itself by making requests to the model service

and receiving responses back

44

Model-as-Service

 The pros of this pattern are:

 Dependability - model bugs are less likely to crash the web application

 Scalability - you can choose optimal hardware for the model and scale it appropriately

 Flexibility - you can easily reuse a model across multiple applications

X Since this is a separate service, you add a network call when your server or client interacts

with the model. That can add latency to your application

X It also adds infrastructural complexity because you are on the hook for hosting and

managing a separate service

 The model-as-service pattern is still a sweet spot for most ML-powered

products since you really need to be able to scale independently of the

application in most use cases

45

Outlier

 With drift, we're comparing a window of production data with reference data as

opposed to looking at any one specific data point. While each individual point

may not be an anomaly or outlier, the group of points may cause a drift

 It's not very easy to detect outliers because it's hard to constitute the criteria for an outlier.

Therefore the outlier detection task is typically unsupervised and requires a streaming

algorithm to identify potential outliers

 Typically, outlier detection algorithms fit to the training set to understand what normal data

looks like and then we can use a threshold to predict outliers

46

Data drift in Evidently

 For small data with <= 1000 observations in the reference dataset:

 For numerical features (n_unique > 5): two-sample Kolmogorov-Smirnov test

 For categorical features or numerical features with n_unique <= 5: chi-squared test

 For binary categorical features (n_unique <= 2), use the proportion difference test for

independent samples based on Z-score

 For larger data with > 1000 observations in the reference dataset:

 For numerical features (n_unique > 5): Wasserstein Distance

 For categorical features or numerical with n_unique <= 5): Jensen–Shannon divergence

47

